Let $\left| {{{\vec A}_1}} \right| = 3,\,\left| {\vec A_2} \right| = 5$, and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 5$. The value of $\left( {2{{\vec A}_1} + 3{{\vec A}_2}} \right)\cdot \left( {3{{\vec A}_1} - 2{{\vec A}_2}} \right)$ is

  • [JEE MAIN 2019]
  • A

    $-106.5$

  • B

    $-112.5$

  • C

    $-118.5$

  • D

    $-99.5$

Similar Questions

What is the unit vector perpendicular to the following vectors $2\hat i + 2\hat j - \hat k$ and $6\hat i - 3\hat j + 2\hat k$

Define the scalar product of two vectors.

$\vec{A}$ is a vector quantity such that $|\vec{A}|=$ nonzero constant. Which of the following expressions is true for $\vec{A}$ $?$

  • [JEE MAIN 2022]

If $\overrightarrow {\rm A} = 2\hat i + 3\hat j - \hat k$ and $\overrightarrow B = - \hat i + 3\hat j + 4\hat k$ a unit vector perpendicular to both $\overrightarrow A $ and $\overrightarrow B $ will be

If $\vec A$ and $\vec B$ are perpendicular vectors and vector $\vec A = 5\hat i + 7\hat j - 3\hat k$ and $\vec B = 2\hat i + 2\hat j - a\hat k.$ The value of $a$ is